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ABSTRACT

Two major challenges for collaborative filtering problems are
scalability and sparseness. Some powerful approaches have
been developed to resolve these challenges. Two of them
are Matrix Factorization (MF) and Fuzzy C-means (FCM).
In this paper we combine the ideas of MF and FCM, and
propose a new clustering model — Modified Fuzzy C-means
(MFCM). MFCM has better interpretability than MF, and
better accuracy than FCM. MFCM also supplies a new per-
spective on MF models. Two new algorithms are developed
to solve this new model. They are applied to the Netflix
Prize data set and acquire comparable accuracy with that
of MF.

Categories and Subject Descriptors

1.2.6 [Artificial Intelligence|: Learning;
H.3.3 [Information storage and retrieval]: Information
search and retrieval—Information filtering

General Terms

Algorithms, Experimentation, Performance

Keywords

Collaborative Filtering, Clustering, Matrix Factorization,
Fuzzy C-means, Netflix Prize

1. INTRODUCTION

Recommendation systems are usually constructed on the
basis of two types of different methods — content-based fil-
tering (CBF) and collaborative filtering (CF). Content-based
filtering methods provide recommendations based on fea-
tures of users or items. However, it is difficult to extract
features from users or items in some circumstances. For
example, how can one extract features from a shirt to de-
pict whether it is beautiful or not? Collaborative filtering
methods circumvent this difficulty. They just use the known
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ratings of items made by users to predict ratings of new
user-item pairs. The philosophy of collaborative filtering is
that two users probably continue choosing similar products
if they have already chosen similar ones. We will consider
the collaborative filtering algorithms in this paper.

Many algorithms for CF problems have been developed,
such as regressions, clusterings, matrix factorizations, latent
class models and Bayesian models etc [3, 5]. In this paper
we propose an efficient clustering model Modified FCM
(MFCM), which is motivated by Fuzzy C-means (FCM)
but aims to minimize Root Mean Squared Error (RMSE).
MFCM supplies a new perspective on matrix factorization
(MF) methods. It gives a more reasonable explanation why
MF works well for CF problems. Furthermore, two new algo-
rithms MFCM1 and MFCM2 are proposed to realize MFCM
in this paper.

This paper is arranged as follows. In Section 2 we briefly
review FCM and MF algorithms. Our new model MFCM
and algorithms MFCM1 and MFCM2 are described in Sec-
tion 3. In Section 4 we show the results of these algorithms
applied to the Netflix Prize data set. Finally we make con-
clusions in Section 5.

2. FCM AND MF ALGORITHMS
2.1 Fuzzy C-means (FCM)

The idea of clustering users is quite natural since a col-
laborative filtering algorithm usually tries to make recom-
mendations to a user based on the histories of other users
who showed similar preferences or tastes with this user. We
can cluster the users into different classes. The users in the
same class will be assumed to have similar preferences and
those in different classes will be assumed to have distinct
preferences.

One of the simplest clustering algorithms is K-means. K-
means is understandable and implementable easily. How-
ever, every user is only put into one class eventually, which
is too rigorous for most real-world problems. For CF prob-
lems it usually sounds more reasonable to allow that users
belong to different classes. FCM takes this idea and classifies
every user into different classes with suitable probabilities.

Denote the rating of movie m made by user u as ry,m,. All
ratings made by the user u form a vector r,. Denote the
set of all user-item pairs in the training set by P. That is,
P ={(u, m)|ru,m is in the training set}. Denote {m|(u,m) €
P} by Pu and {u|(u,m) € P} by P™. Let zyx be the
probability that user u belongs to cluster k, and Z = (zy.x)
is the U x K probability matrix, where U and K is the



number of users and classes respectively. Let ¢k, be the
center vaule of movie m in class k, and C = (ck,m) is the
K X M center matrix, where M is the number of movies.
The goal of FCM is to choose the matrix Z and the center
matrix C in order to minimize the objective function:
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with the constraints Z1 = 1 and Z > 0 ! since Z is a
probability matrix, where « is a user-defined positive real
number, ¢i is the center vector of cluster k, that is, ¢ =
(ck,15-+,cr,nm). Typically « is taken to be 2.

A standard iteration algorithm to learn Z and C has been
proposed. After the algorithm converges, we achieve the
final probability and center matrix Z and C. A new pair of
user-movie can be predicted by

K
fu,m = Z éu,kék,m- (2)
k=1

2.2 Matrix Factorization (MF)

The philosophy of matrix factorization (MF) is from SVD.
It aims to find two matrices W and V to minimize some
norm of the residual

IR-WwV"], 3)

where R = (ry,m) is the rating matrix with size U x M, W =
(Wa,k) and V = (vy,,) are U X K and M X K respectively,
both of which will be learned from the data. Usually the
norm || - || is taken as the Frobenius norm and only ry m € P
are considered. K is a relatively small user-defined positive
integer.

To prevent overfitting, some shrinkage method should be
applied to shrink the parameters in W and V. Usually Ridge
shrinkage is useful [7, 8, 9]. To summarize, the objective
function we should minimize is
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(u,m)eP (4)
F Al wa |3 + [l om [13)],

where w,, and v,, is the u-th row of W and the m-th row
of V respectively, and A is the shrinkage coefficient. The
steepest descent method is usually used to solve (4).

One commonly used explanation why MF works well for
CF problems is that each row of W represents one user’s
preference factors and each row of V' one movie’s attribute
factors. When these two match for a particular user and a
movie, the rating is probably high.

3. A NEW CLUSTERING MODEL — THE
MODIFIED FCM

In comparison with the factor-based explanation of MF,
we think the idea of fuzzy clustering in FCM is more natural.
But the objective function in (1) is a little confusing. Since
our goal is to find Z and C to achieve the best prediction
accuracy, why not minimize the prediction errors directly?

17 > 0 means that every element of Z is not less than 0 .

A more natural objective function is

H(Z,C)=|R-ZC |¥
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with the constraints
Zl1=1 and Z >0 (6)

since Z is a probability matrix. Hence the new constrained
optimization problem that we need to solve is
i H(Z,C).
i H(Z,0) (7

After Z and C are obtained, (2) can be used to predict any
new user-movie pair. Since the new model is motivated by
FCM, we refer to it as Modified FCM (MFCM).

Note that if we take a = 2 in (1), Equation (1) can be
rewritten as

Z Z[Zu,k(ru,m - ck,M)]2a

(u,m)eP k=1

which is similar with our new objective function (5). How-
ever, the optimization problem (7) in MFCM is much more
difficult to be solved than the original one in FCM. For Equa-
tion (1) we can iteratively update the probability z,; and
the center ck,m explicitly from the equations 0F/0zy,,x = 0
and OF/0ck,m = 0 until the algorithm converges. But z,
and cg,m can not be obtained explicitly from the above equa-
tions. Hence the same method is not applicable for our new
problem. This may be the reason why FCM choose to min-
imize (1) instead of (5).

If the constraints in (7) are neglected, our new objective
function (5) is completely the same as equation (3) in MF.
Our new fuzzy clustering idea also supplies a new explana-
tion why MF is reasonable for CF problems.

MF can be solved efficiently by steepest descent (or called
gradient descent with the momentum 0) method. Since our
new problem (7) is similar with that in MF, we expect that
a similar algorithm can be applied for (7) .

The simplest method to handle the constraints is to pe-
nalize the parameters z, . when they do not satisfy the
constraints. All our algorithms are applied to the residu-
als of the original ratings, thus it is reasonable to shrink
the center ¢k, when it is far from 0. We also penalize the
probability z,  if it is far from O or disobeys the probabil-
ity constraints (6). To summarize, the previous constrained
problem is transformed into an unconstrained problem:
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where v = (v1,...,v, ) and v; = max{0, —v;} . In our ex-
periments the penalization parameter A is taken to be small
values. Thus the aim of the penalization terms is just to
shrink the parameters to alleviate overfitting rather than to
constrain the parameters to satisfy (6) strictly. (8) is actu-
ally a modified version of (4). Hence the method to minimize



(4) can be used directly to minimize (8). We refer to this
algorithm as MFCM]1.

The accuracy of MFCM1 is usually a little better than
that of MF according to our experiments (see more details
in Section 4), but the resulting probability matrix Z can not
satisfy the constraints in (6) strictly, which loses its inter-
pretability somewhat.

The difficulty of solving (7) originates from its constraints
(6). The other natural idea to handle (6) is to enforce them
into the objective function:

H(Z,C) = Z (ru,m — Zpu,kck,m)27 (9)
k—1

(u,m)eP

where py = e*wk /3 e*wl is the probability that user
u belongs to cluster £ . Then P = (p, ) satisfies all the
constraints in (6) automatically.

With the same reason as in MFCM1, center ¢, should be
penalized if it is far from 0. z, is also regularized towards
0 since zux =0 (kK =1,..., K) means that user u belongs to
every cluster with the same probability. When this is taken
into consideration, our final objective function becomes:
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(10) can be solved efficiently by gradient descent with nonzero
momentum. We refer to this algorithm as MFCM2.

4. EXPERIMENTS
4.1 The Netflix Prize Data Set

The Netflix Prize was founded by an online movie rental
company Netflix at October, 2006. Its aim is to improve
the accuracy of Netflix’s movie recommendation system —
Cinematch™ by 10% percent. Three data sets are public
for competitors: the training set, probe set (a small part
of the training set) and quiz set (or qualifying set). They
involves 480, 189 different users who own unique user IDs
ranging from 1 to 2,649,429, and 17,770 different movies
with unique movie IDs ranging from 1 to 17,770. Each rat-
ing has a value belonging to {1,2,...,5}. The whole train-
ing set is composed of 100,480, 507 user-movie pairs, The
probe set is composed of 1,408, 395 pairs which are included
in the training set, and the quiz set consists of 2,817,131
pairs. All ratings in the training set are given to learn mod-
els, and ratings in the quiz set are kept by Netflix in order
to check the accuracy of competitors’ models. Root Mean
Squared Error (RMSE) is used to decide which predictions
are the best. The RMSE of Cinematch®™ for the quiz set
is 0.9514, and anybody who achieves 10% improvement of
RMSE, namely 0.8514, will get 1 million dollars from the
Netflix. The readers may be refered to [2] for more details.

4.2 Data Preprocessing

Suppose 7, and 7™ are the average ratings of user u and
movie m respectively, and 7 is the global average rating. All
the averages are computed only by ratings in the training
data P.

Table 1: RMSE for different models. We take K =
40, 7 = 0.004 and € = 10~° in all the three models. The
shrinkage coefficient A = 0.025 in MF and MFCM1,
and A = 0.0002 in MFCM2. The momentum y = 0.85.

Models | NO. of Iterations RMSE
MF 37 0.920124

MFCM1 40 0.918029

MFCM2 112 0.922317

Since typically a user rates a small proportion of movies,
the value of 7, is usually not very reliable compared to the
global average 7. Hence it is reasonable to shrink 7, to
approach 7 :

_ |Pu|7’:'u, + K17 _ |7Du| ~ _

Fyu=—m———— =T+ ————(Fu — T), 11

"= Pl Pul 4 e (4D
where k1 is a positive constant value and called the shrink
factor of users. Similar method can be used to shrink 7™ :
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where k2 is the shrink factor of mowvies. 7, and 7™ are
thought to be more reliable averages compared to 7, and
7, and they are used in our experiments.

Intuitively a coarse prediction of r m might be 7 +7" —F,
that is,

fu,m:f1L+f711777
Pul . P m o (13)
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We call this prediction strategy the Average Prediction (AP),
which is also used in [6].

Compared to the preprocessing method proposed by Bell
and Koren [1], this method is symmetric for users and movies.
Its resulting averages do not rely on whether user or movie
averages are first calculated. Moreover, the above prepro-
cessing method generates better predictive results in our ex-
periments.

All of our algorithms in this paper are applied to the resid-
ual ratings ru,m — (Fu + 7" — 7) (k1 = 50 and k2 = 100)
except with specific statement. We still use the token ry,m
as the residual rating without confusion.

4.3 Results

In our experiments, FCM only produces RMSE of 0.9469
on the probe set of the Netflix prize data, and MF pro-
duces RMSE of 0.9201, which is much better than that of
FCM. Another advantage of MF is that it converges more
rapidly. Typically MF converges after several dozens of it-
erations and FCM converges after hundreds of iterations.
Our two new algorithms MFCM1 and MFCM2 have similar
RMSE with MF but better interpretability. All the results
are shown in Table 1. Generally MFCM1 generates a little
better results than that MF does, and MFCM?2 generates a
little worse results. However, results of MFCM2 have much
better interpretability since they satisfy the probability con-
straints (6) strictly.

A smaller learning rate 1 usually produces a smaller RMSE
for the algorithms in Table 1 [9]. This can be seen from Ta-
ble 2 obviously. However, the rate of convergence halves
when 7 halves. A common method to fix the problem is



Table 2: Results of different models when the learn-
ing rate n has different values. All the results orig-
inate from K = 40 and ¢ = 107°, and X\ is 0.025
for MFCM1 and 0.0002 for MFCM2. In addition,
MFCM2 has the momentum p = 0.85. n is reduced
by (14) in which 7 = 0.004 and ¢, = 0.02 for MFCM1,
n is reduced by (15) in which 7®) = 0.006 and N = 80
for MFCM2.

Models n NO. | RMSE
0.004 40 | 0.918029
MFCM1 0.002 85 | 0.916028
0.001 176 | 0.915017

Reducing n by (14) | 55 | 0.915165
0.006 81 | 0.923233
MFCM2 0.004 112 | 0.922317
0.002 199 | 0.921644
Reducing n by (15) | 121 | 0.922183

to take a large n in the beginning and decrease 1 gradually
when iterations continue [4].

For MF and MFCM1, our experiments show the following
strategy of reducing n works well:

(n+1) 77(”)/2: if 5n/77(n) < €o,
K - (n) . (14)
n"’, otherwise ,
where (™ and 8, are the value of 1 and the decrease of
RMSE for the n-th iteration respectively, and €y is a small
positive constant. If 77(0) = 0.004 and ¢p = 0.025, the RMSE
decreases to 0.915165 after 55 iterations.

Unfortunately (14) can not improve the accuracy of MEFCM2.

The other strategy we try is

(n+1) _ 77(0)

= ma (15)

n
where N is a user-defined positive constant. If 7(® = 0.006
and N = 80, the RMSE of MFCM2 decreases from 0.923233
to 0.922183 after 121 iterations. The improvement is modest
compared to that of MFCM1.

Another trend for MFCM2 in our experiments is that a
smaller momentum generates better predictions, but causes
a slower convergence rate at the same time.

As stated in Section 4.2, all algorithms in this paper are
applied to residual ratings ry,m — (Fu + 77" — 7). The final
predictions of an algorithm depend much on the values of 7,
and 7, namely the values of k1 and k2. A common method
to determine k1 and k2 is to try some different values and
the best pair is used at last. A more robust method is to
treat 7, and 7" as variables and adjust their values adap-
tively as the model is being established [7]. Their updates
can be achieved by steepest descent method or letting their
derivatives equal 0. Both MFCM1 and MFCM2 are easily
modified to merge these ideas. The RMSE of MFCM1 de-
creases from 0.915165 to 0.910996 and the RMSE of MFCM2
decreases from 0.922183 to 0.920141. Both of them use the
same parameters as shown in Table 2.

5. CONCLUSIONS

In this paper we propose a new clustering model — Modi-
fied Fuzzy C-means (MFCM) for collaborative filtering (CF)
problems. Though motivated by Fuzzy C-means (FCM),

MFCM is designed to minimize Root Mean Squared Error
of predictions directly. It also supplies a new explanation
why matrix factorization usually works well for CF prob-
lems. We then develop two efficient algorithms — MFCM1
and MFCM2 to realize MFCM. Both of them acquire better
predictions than FCM, and comparable accuracy with MF
but better interpretability. Though MFCM proposed above
is to cluster users, it is easy to generalize it to cluster movies
or to cluster users and movies simultaneously.

On the other hand, we believe that there exist more pow-
erful algorithms to solve (7) since MFCM1 and MFCM2 fi-
nally reduce the training RMSE to over 0.76 and 0.78 for
the Netflix data set respectively. For furture work, we will
explore some more efficient algorithms.

In another perspective, MFCM can be used to preprocess
data in order to solve large-scale CF problems more effi-
ciently. For example, the resulting probability matrix Z can
be utilized to calculate similarity between users. Then the
original neighbor-based methods can be used for prediction
with much less computation.
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ABSTRACT

Neighborhood-based algorithms are frequently used mod-
ules of recommender systems. Usually, the choice of the
similarity measure used for evaluation of neighborhood re-
lationships is crucial for the success of such approaches. In
this article we propose a way to calculate similarities by for-
mulating a regression problem which enables us to extract
the similarities from the data in a problem-specific way. An-
other popular approach for recommender systems is regular-
ized matrix factorization (RMF). We present an algorithm —
neighborhood-aware matrix factorization which efficiently
includes neighborhood information in a RMF model. This
leads to increased prediction accuracy. The proposed meth-
ods are tested on the Netflix dataset.

Categories and Subject Descriptors

H.2.8 [Database Applications]: [Data mining, Recom-
mender Systems, Collaborative Filtering, Netflix Competi-
tion]

General Terms

Latent factor model, Similarity matrix, Ensemble perfor-
mance

Keywords

recommender systems, matrix factorization, KNN, Netflix,
collaborative filtering

1. INTRODUCTION

Due to the increasing popularity of e-commerce, there is
growing demand of algorithms that predict the interest of
customers (called users in the following) in some product
(called item in the following). Such interest is commonly
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quantified by a non negative number r which we call a rat-
ing in this article. Algorithms which predict a rating for
each user-item pair are called recommender systems [1]. The
predictions of recommender systems are in general based
on a database which contains information about users and
items. The Collaborative Filtering (CF) approach to recom-
mender systems relies only on information about the behav-
ior of users in the past. The pure CF approach is appealing
because past user behavior can easily be recorded in web-
based commercial applications and no additional informa-
tion about items or users has to be gathered. CF algorithms
for recommender systems are therefore easily portable.

More abstractly, the goal of CF is missing value estima-
tion. Consider a system consisting of m users and n items.
We define the set of users as the set of integers {1,...,m}
and the set of items as the set of integers {1,...,n}. The
m X n rating matrix R = [rui]i<u<m;i<i<n stores the rat-
ings of users for items where 7,; is the rating of user u
for item ¢. The input to a CF algorithm is a set £ =
{(u1,%1),...,(ur,ir)} of L user-item tuples referred to as
votes and the corresponding ratings in the rating matrix.
We assume that ratings in the rating matrix are non-zero
if they are in the training set and zero if they are not in
the training set, i.e., we assume 7,; # 0 if (u,i) € £ and
i = 0 otherwise. Such ratings not in the training set are
called missing values. The goal of the system is to predict
the missing values of R.

In fall 2006, the movie rental company Netflix started a
competition, the Netflix Prize. The goal of the competi-
tion is to design a recommender system which improves on
the Netflix recommender system Cinematch by 10% with
regard to the root mean squared error (RMSE) on a pub-
lished database. This database contains training data in the
form of about 100 million ratings from about 480,000 users
on 17,770 movies. Each rating in this database is an inte-
ger between 1 and 5. A probe set is provided which can be
used to test algorithms. Furthermore, Netflix published a
qualifying set which consists of user-item pairs but no rat-
ings (the items correspond to movies in this database). The
ranking of a submitted solution is based on this data set.
The Netflix dataset captures the difficulties of large recom-
mender systems. First, the dataset is huge and therefore the
runtime and memory usage of potential algorithms become
important factors. Second, the ranking matrix is very sparse
with about 99 percent of its entries being missing such that
many users have voted for just a few movies. The algorithms



presented in this article were tested on the Netflix dataset.
However, their design is not specific to this dataset, thus the
algorithms can be applied to other CF problems as well.

An obvious way to generate predictions of ratings is to cal-
culate similarities between users and deduce a rating of some
user u for an item ¢ from ratings of that item by users with
high similarity to user w. Similarly, a rating for some item ¢
by user u can be predicted from ratings by that user for simi-
lar items. Such approaches have successfully been applied to
the Netflix dataset. We deal with pure neighborhood-based
approaches in Section 2. It turned out that they benefit from
simple preprocessing where the ratings are first cleaned from
so called global effects [2]. Global effects are linear relation-
ships between the ratings and some simple variables like the
time of the rating (which is provided in the Netflix dataset).
We introduce in Section 2.1 four global effects which have
not been considered before.

One problem of neighborhood-based approaches is the
choice of the metric, or in other words, the measure of sim-
ilarity between users or items.! A common way to measure
the similarity between two users is the Pearson correlation
between ratings of items which both users voted for. How-
ever, if two users have just a few common ratings (which
is often the case in the Netflix dataset), the Pearson corre-
lation is a bad estimate for their similarity. In Section 2.2
we propose a method where the similarities between items
themselves are learned by gradient descent. Thus, the choice
of a similarity measure is passed from the designer to the al-
gorithm. One drawback of this method is the huge number
of parameters which are fitted (the whole n x n matrix of
item similarities has to be estimated) and thus its tendency
to overfit the training data. This problem is tackled by a
factorized version described in Section 2.3. This algorithm
does not compute the whole similarity matrix but a low rank
approximation in a linear latent factor model. This reduces
the number of parameters significantly. A further advantage
of factorized similarities is its memory efficiency. While the
whole similarity matrix between users cannot be precom-
puted because of memory restrictions of computers to date,
the online computation of correlations can be very time de-
manding. This makes naive neighborhood-based approaches
infeasible for large sets of elements like the set of users in the
Netflix database. The factorized similarity model overcomes
this problem. First, for a reasonable number of factors per
user, the factor matrix can easily be held in memory, and
second, for any two users the similarity is computed by just
the inner product of two vectors. This model can also easily
be extended to include information about unknown ratings
(i.e., user-item pairs for which one knows that this user rated
that item but the actual rating is unknown). The inclusion
of unknown ratings in the prediction was first discussed in
[7]-

A regularized matrix factorization (RMF) produces a rank
K approximation of the m X n rating matrix by factorizing
it into a m x K matrix of user features and a K X n ma-
trix of item features. RMF models are easy to implement
and achieve good performance. Consequently, they are of-
ten used in CF algorithms. Overspecialization on the data
points can be avoided by careful use of regularization tech-
niques. We show in Section 3 that a hybrid approach which
is partly neighborhood-based and RMF-based is a very ef-

1 . .. .
Obviously, one can also define a similarity measure for user-
item pairs, an approach which is not discussed in this article.

Nb. | Side | Effect | RMSE
10 both | Previous effects 0.9659
11 item | average movie year 0.9635
12 user | movie production year | 0.9623
13 user | STD of movie ratings | 0.9611
14 item | STD of user ratings 0.9604

Table 1: Preprocessing for neighborhood models.
The table shows the RMSE on the probe set of the
Netflix dataset when accounting for 10 to 14 global
effects (i.e., the row with Nb. i shows the error when
one accounts for global effects 1 to i). The second
column (“Side”) specifies whether the effect defined
in the third column (“Effect”) needs the estimation
of parameters for the users or for the items.

fective CF method. This method performs slightly better
than well-tuned RMF methods or restricted Boltzmann ma-
chines (RBMs). Additionally, the model can be trained very
quickly.

2. NEIGHBORHOOD-BASED MODELS

Neighborhood-based models for recommender systems com-
monly compute the similarity between users or items and
use these similarities to predict unknown ratings. It is diffi-
cult to pre-calculate correlations between users for the Net-
flix database because the user correlation matrix can not
be held in main memory of current computers. This makes
the evaluation of naive user-based neighborhood approaches
very slow and therefore unpractical. We will discuss an ef-
ficient algorithm which is based on user similarities in Sec-
tion 2.4. Before that, we discuss our algorithms for the case
of item-based similarities and note that the principles ap-
ply to user-based similarities in the same way. The sim-
ilarity c;; between two items ¢ and j is often estimated
by the Pearson correlation between common ratings of that
items, i.e., the correlation between the list of ratings of users
U(i, j) = {u|(u,i) € L and (u,j) € L} which voted for both
items ¢ and j. The full neighborhood information is stored
in the symmetric similarity matrix C = [cij]1<4,j<n- Other
similarity measures like the mean squared error (MSE) or a
distance derived from the movie titles can also be used.

Algorithms in the flavor of the k-nearest neighbor (kNN)
algorithm produce ratings based on the ratings of the £ most
similar items, i.e., the predicted rating #,; of an user u for
item ¢ is computed as

. ZjeNk (u,i) Cid Tuv
Pui = —~—= (1)
ZjeNk(u,i) Cij
where Ni(u,i) denotes the set of the k items most similar
to item ¢ that were rated by user w.

2.1 Preprocessing

In [2], so called "global effects” of the data were discussed
and the removal of such effects from the data was proposed
as an effective preprocessing step for the Netflix dataset.
Such simple preprocessing turns out very useful if applied
prior to kNN methods. As in [2], we model a global effect
as a linear relationship between the ratings and some simple
property of the votes. For each of the effects, the goal is to
estimate one parameter per user or per item. For example,



the effect may be the dependence of a vote (u, i) on the mean
rating of user u. In this case, one would fit a parameter 6;
for each item such that ru; ~ 6;mean(u) The prediction is
subtracted from the ratings and any further training is done
on the residuals (see [2] for details).

We found four effects not described before which lower the
RMSE on the probe set to 0.9604, see Table 1. The effects
considered are the effect of the average production year of
the movies the given user voted for (“average movie year”),
the production year of the given movie ("movie production
year”), the standard deviation of the ratings for the given
movie (?STD of movie ratings”) and the standard deviation
of the ratings of the given user ("STD of user ratings”).

The algorithms described below are tested for different
preprocessings in order to facilitate comparison with other
algorithms.

2.2 Regression on similarity

One problem of approaches based on the Pearson correla-
tion between item ratings is that for many item pairs, there
are only a few users which rated both items. For any two
items 14,7, we define the support s;; for these items as the
number of users which rated both items. The reliability of
the estimated correlation grows with increasing support s;;.
For the Netflix dataset most correlations between movies are
around 0. In order to decrease the influence of estimated
correlations with low support on the prediction, we found
it useful to weight correlations according to their support
such that the similarity c;; between item ¢ and j is given by
Cij = 51’9’% where ¢;; is the Pearson correlation between
common ratings of the two items and « is a constant in the
range of 100 to 1000 (this procedure was introduced in [3]).

In any case, the choice of the similarity measure is crit-
ical for the success of neighborhood-based algorithms. In
this section we describe an alternative approach where the
matrix of similarities C between items is learned by the
algorithm itself. The matrix can be initialized with small
random values around 0 or with Pearson correlations 2. A
prediction of the rating of user u for item i is calculated sim-
ilar to equ. (1), but over the set N(u,i) = {j # i|(u,j) € L}
of all items different from 7 which user u voted for in the
training set

N ZjeN(u,i) Cij Tuj
Twi — ~—— 7 - (2)
2 jeN(ui l€iil
Since similarities can become negative, we normalize by the
sum of absolute similarities.

The objective function to minimize is given by the MSE

with an additional regularization term

1 N
B(C,L)=5 D (Fu—mu)’+7) i,

(u.i)EL i<k

where v is a regularization constant. The model is trained
by stochastic gradient descent on the objective function. For
each training example we update only those similarities rel-
evant for the example, i.e., for example (u, ) we update c;;
if j € N(u,7). The update of similarity c;; is then given by

i =t = nesign (s = r) 52 ) — v etft. 3)
Cij

*We used a uniform distribution in [~0.1,0.1] or Pearson
correlations, with similar results.

Preprocessing | probe RMSE | qual. RMSE
Raw data 0.9574 0.9487
1GE 0.9458 0.9384
2GE 0.9459 0.9384
6GE 0.9372 0.9281
10GE 0.9349 0.9256
14GE 0.9331 0.9239

Table 2: The RMSE of the similarity regression
model on the probe set (middle column) and the
qualifying set (right column) of the Netflix dataset
for preprocessings that accounted for 0 to 14 global
effects (GE). For comparison, the Netflix recom-
mender system achieves a RMSE of 0.9514 on the
qualifying set. The probe RMSE for 10 and 14 global
effects can be compared to the first and the last row
of Table 1.

We opted to use the sign of the error gradient in (3) because
this update turned out to be much more stable than the gra-
dient itself. This choice was inspired by the sign-sign LMS
rule (see, e.g., [5]). The number of trainable parameters
in this model for the Netflix dataset is around 157 million
which is very large. Hence training of the model is prone to
early overfitting. Typical values of v and 1 are 0.01. Results
on the Netflix data are shown in Table 2. At a single epoch,
approximately L - sp; similarities are updated, where L is
the size of the training set £ and sy is the average number
of votes per user (sas is around 200 for the Netflix dataset).
The training time for one epoch is in the range of one hour
on a standard PC and usually a single epoch suffices.

2.3 Regression on factorized similarity

Gradient descent on the elements of the symmetric item
similarity matrix C leads to early overfitting because of the
huge number of trained parameters. In this section, we show
that one can overcome this problem by learning a factorized
version of C. In other words, the algorithm learns two K X n
matrices P and Q with K < n and C is computed as

c=P"qQ. (4)

Hence, we learn a rank-k approximation of C which dras-
tically reduces the number of parameters. Only the upper
triangle of PTQ is used to calculate similarities, since sim-
ilarities are assumed to be symmetric, i.e., ¢;; = ¢j;. The
similarity c;; between items ¢ and j is then given by
< 5)
p;qi, ifi>j,
where p; and q; denote the ith column of P and Q respec-
tively. Ratings are predicted as in the previous section by
equ. (2).

The training schedule is similar to the direct similarity
regression model with the difference that for every similar-
ity ¢;; (with ¢ < j) we have to update the 2K parameters
Pii,-..,PKi and qij,...,qK;. Hence the training is slowed
down by a factor of K as compared to direct similarity re-
gression. Results on the Netflix data are shown in Table
3. The results are marginally better compared to the non-
factorized version. Training the model took several hours on
a standard PC.



Preprocessing | K | RMSE
10GE 80 | 0.9324
14GE 100 | 0.9313

Table 3: The RMSE of the factorized item similar-
ity regression model on the probe set of the Netflix
dataset for various preprocessings.

Preprocessing | K | RMSE

Raw 10 | 0.9951
2GE 10 | 0.9539
6GE 10 | 0.9469
14GE 20 | 0.9371

Table 4: The RMSE of the factorized user similar-
ity regression model on the probe set of the Netflix
dataset for various preprocessings.

2.4 Factorized user similarity matrix

An advantage of the factorized similarity model is that
similarities between large sets of elements can be stored in
memory. This enables us to store similarities between users
in the factor matrices. In order to learn user similarities
we perform gradient descent on the factorized user similar-
ity matrix. All calculations and update rules are mirrored
versions of those discussed above for the item similarity ma-
trix. For the Netflix dataset the training time increases by
a factor of 30 compared to the training time of the factor-
ized item similarity model since there are approximately 30
times more users than items in the database.

The results of the model for a few different preprocessings
of the data are shown in Table 4.3 Although the results are
similar the those of the factorized item similarity model, the
algorithm is still useful since the information extracted from
user similarities is different from that when item similarities
are used. This contributes to the performance if the models
are finally combined for a single prediction, see Section 4.

2.5 Incorporating unknown ratings

The model can be extended to include unknown ratings.
This helps in general on users with few ratings in the training
set. Let £’ denote the set of votes for which the rating is
unknown (for the Netflix dataset, our set £’ consisted of
votes in the probe set as well as those in the qualifying set).
Let N'(u,i) = {j # i|(u,j) € L'} denote the set of items
different from i user u has voted for with unknown rating.
Then, the prediction #,; of a rating for user u on item ¢ is
given by

. ZjeN(u,i) Cij Tuj + ZjeN’(u,i) Cij Tuj
Tui = ’ (6)
ZjeN(1L,i) |CW‘ + ZjeN’(u,i) |CTJ|

where 7, are estimates of the unknown ratings (they are pa-
rameters of the model which are trained, see below). Train-
ing of the similarities is done as in the basic model (see
equ. (3)) with the difference that for training example (u,7)
we update all ¢;; for j € N(u,i) U N'(u,i). The unknown
ratings 7,; are trained simultaneously with gradient descent.

3Because of the time demands of this algorithm, training was
stopped after the presentation of only 30% of the training
set.

One can initialize each unknown rating with the mean rat-
ing of the corresponding item. Slightly better performance
can be obtained if one initializes the unknown ratings with
predictions of a neighborhood-based approach, see equ. (1)
(the reported results were obtained in this manner). On
the Netflix dataset, this model achieved a RMSE of 0.9278
on the probe set with a preprocessing that accounted for
14 global effects. This is an improvement of 0.053 over the
model without unknown ratings (see Table 2).

3. NEIGHBORHOOD-AWARE MATRIX FAC-

TORIZATION

In this section we present an algorithm — neighborhood-
aware matrix factorization (NAMF) — which efficiently in-
corporates a linear regularized matrix factorization (RMF)
in a neighborhood-based model. More specifically, for a
given vote (u,1), the algorithm computes three predictions:
a prediction #MF which is based on a RMF, a prediction
Fuic" is based on a user-neighborhood model, and a predic-
tion 7™ which is based on a item-neighborhood model.
Both neighborhood-based models utilize predictions from
the RMF model if needed. The final prediction of the al-

gorithm is a combination of the three predictions.

3.1 Regularized matrix factorization model

A RMF computes a rank K approximation R’ = ABT
of the rating matrix R, where A € R™*¥ is the user factor
matrix and B € R"*¥ is the item factor matrix. The entries
of these matrices are determined such that ry; ~ r},; for all
votes (u,i) € L. After the factor matrices A and B have
been determined by the training algorithm, the prediction
#MP for a vote (u,i) is given by #M " = ¢!, = Zszl Qukbik-
Because the rating matrix is usually sparse, additional reg-
ularization is needed. Using a regularization as proposed in
[9], [6], [8] leads to the error function

Ny A
E(A,B,L)= ) (Tm—TﬁfF)2+§(||A||2F+||B||§)7 (7)
(u,i)eL

where || - ||r denotes the Frobenius norm and X is the reg-
ularization parameter. We use stochastic gradient descent
to minimize this error function. The update equations for a
training example (u,?) are therefore

ald = ald +1n- (ewbi’ — Naly) (8)
Y= bR+ (ewiagy — AbRY), (9)
for k=1,...,K and

K
oldqold
Cui = Tui — E Ay bik - (10)

k=1

3.2 User-neighborhood model

The similarity of two users can be measured by the Pear-
son correlation py3°" between the list of ratings for items
which were rated by both users. In order to decrease the
influence of correlations with low support we shrink each
correlation according to their support sy, [3]:

~user

user _ SuvPuv (11)
w .
Suw + Quser

where the parameter o“*“" is determined as discussed be-

low (in order to facilitate readability we denote all variables



and parameters of the user-neighborhood model by a “user”
superscript and those of the item-neighborhood model by a
“item” superscript). However, the use of the Pearson corre-
lation may be problematic in some cases. The most severe
problem occurs if the number of common ratings is small for
most user pairs (i.e., the support for most user pairs is low).
In this case, the Pearson correlation between these ratings is
a very unreliable measure of similarity. For many datasets
however there exist for most users other users such that the
number of common rated items is large, and reliable corre-
lations can be calculated for these pairs. We will make use
of this observation below. Another problem of employing
correlations between users is the size of the correlation ma-
trix. For the Netflix dataset where the number of users is
around 480,000, the whole matrix needs about one TByte of
memory. We overcome this problem by storing for each user
u only the correlations with the J users with highest corre-
lation to u. A rating prediction 7,;°" is then computed as
the weighted sum over the ratings of these best correlating
users where the rating r,; is given by the predicted rating
of the RMF model or a rating from a training example if it
exists

E cusery.
fuser _ veU y (u) “uv vi (12)
wi )
Z’UEUJ (u) Cur®"

where Ujy(u) denotes the set of J users with highest cor-
relation to u. Each weighting coefficient c¢j;;°" is computed
from the Pearson correlation py;" by applying a squashing
function

e = (o (Tl — )T ()
where the scaling factor s“*¢", the bias b"*¢", and the expo-
nent y“*" are global parameters which were determined as
described below. The sigmodial squashing function o(-) is
given by

v
(1+exp(—z))

3.3 Item-neighborhood model

For the item side the same principle can be applied. Cor-
relations plf”" between common rated items are shrunk

o(z) = (14)

~item
item __ Si]pm (15)
i - .
Sij + aztem

For each item ¢ only the correlations with the J items with
highest correlation to i are stored. A rating prediction is
then computed as the weighted sum over the ratings of these
best correlating items I;(7). The weighting coefficients are
given by

item

Cz;em _ (O’ (Sztempz;em bittz'm))’Y , (16)

where p{i®™ denotes the Pearson correlation between the

ratings of users that rated both items i and j, and «
sttem pitem and 4™ are constants. The rating prediction

PUE™ for a vote (u, i) is given by

item
)

item
pitem _ ZJGIJ(U Cij Tuj (17)
uro Z | clitem ”
i€l (i) %j

3.4 Combining the information

The predictions from the RMF model, the user neighbor-
hood model and the item neighborhood model are combined
in a single rating. The obvious way to archive this is an
optimal linear combination of the three predictions. Ex-
periments have shown that the predictive accuracy of the
models strongly depends on the support and the number of
ratings from the training data (as opposed to those from the
RMF model) used in the neighborhood models. So we use
a weighted sum, based on this information to combine the
predictions:

S, i)’ ME 4 BS(u, i)

_ Auser +BS(U Z) .fuem
S(u,z) + 3S(u

)8 + BS(u, i)

(18)
S(u,i) = min{Ny, N;}. (19)

In the equation above, N, = |{i|(u,i) € L}| denotes the
number of votes of user u, and N; = [{u|(u,i) € L}| de-
notes the number of votings for item i. S(u,i) = |[{v €
Us(u)|(v,2) € L} and S(u,1) = [{j € L;()|(u,j) € L}
denote the number of votes from the training set used to
calculate the corresponding ratings.

The training schedule can be summarized as follows. First,
correlations py;°" between users and correlations ,5%”” be-
tween items are computed. The best correlating users/items
are computed according to the shrunken correlations (we
used a"®*" = 10 for user correlations and for item correla-
tions @'*®™ = 30) and the corresponding correlations (not
shrunk) are stored. This step is the computationally most
demanding one. Then the RMF is computed. Once this
is done, the predictions of the neighborhood models can be
computed very efficiently, Then, good values for the 13 con-
stants auser ztem7 ,8 57 user 'Ltem buse'r bltem, use1’
yitem §. 8, and 5 in the model are determlned with a ge-
netic algorithm. Because the evaluation of individuals is
very fast, this optimization step can be done quite efficiently
(on a standard PC this step needed 1-2 hours). Once the
model is trained, predictions can be generated very quickly.

3.5 Experimental results

The RMF model was trained on the residuals of the first
global effect (movie effect) described in [2]. The use of
this effect slightly improves RMF performance whereas the
use of all global effects decreases the performance of the
RMF model. All RMF models were trained with stochas-
tic gradient descent using 7 = 0.002 and A = 0.02. The
weights were initialized to small values sampled from a nor-
mal distribution with zero mean and standard deviation
0.001. The neighborhood models were trained on prepro-
cessed data that incorporated 10 global effects. The results
are shown in Table 5. The time to train the whole model
for K = 600 features was about 24 hours on a standard PC.

In comparison, a restricted Boltzmann machine on the
Netflix probe data achieved a RMSE of 0.907 (see Fig. 4
in [7]). Another approach which combines a neighborhood
model with a RMF was described in [2]. This algorithm
obtained a RMSE of 0.9071 on the Netflix probe set. Also,
a matrix factorization where the features were trained with
respect to some neighborhood relation was outlined in [8].
However, this method was only used for data visualization.



Features K of the RMF | RMSE |

10 0.9175
50 0.9069
100 0.9056
300 0.9046
600 0.9042

Table 5: RMSE of different neighborhood-aware ma-
trix factorizations on the Netflix probe data. Pre-
processing for the neighborhood model was done on
10 global effects, the neighborhood size was J =50.

4. ENSEMBLE PERFORMANCE

The final goal of each team that participates in the Netflix
contest is the prediction of unknown ratings with optimal ac-
curacy. In order to achieve maximal prediction accuracy, it is
a common strategy to combine predictions of different algo-
rithms into a final one. We did linear blending on the probe
set, which was not used for training, similar to [4]. Whether
an algorithm is particularly powerful on a given data point
(u, i) depends strongly on the support of the vote, i.e., the
number of votes of user u and the number of votes for item
i. Consequently, a linear combination of predictions for data
points with low support will be quite different from a linear
combination for data points with high support. We there-
fore divided the probe set into slots based on the support of
the data points. To obtain a single value from the user sup-
port and the item support we combined them by taking the
minimum of both. This procedure is called “slot blending”
[4]. The slot boundaries were chosen such that the number
of ratings in the slots was approximately uniform.

For each slot, the final prediction is then computed as a
linear combination of the predictions of the individual algo-
rithms. Suppose one wants to combine the predictions of N
algorithms. These predictions are first stored in a predictor
matrix P € R™Y where [ is the number of votes in the slot
and p;; is prediction of algorithm j for the i-th vote in the
slot. The interpolation weights w are computed with the
pseudo-inverse of P as w = (PTP)"'P7q where q is the
column vector of probe ratings of the slot. The final predic-
tion for a vote from the qualifying set which falls — according
to its support — into this slot is then given by the linear com-
bination of the individual predictions with the interpolation
weights w.

Using this method, we calculated the ensemble perfor-
mance of the algorithms proposed in this article. The RMSE
of the ensemble on the probe set was 0.8981 which results
in a RMSE of 0.8919 on the qualifying set (for predictors
which were re-trained after blending with the probe ratings
included). This is an improvement of 6.25% over the Cine-
match system. The proposed methods can well be combined
with other powerful algorithms like different kinds of matrix
factorizations and restricted Boltzmann machines to further
improve prediction accuracy.

5. CONCLUSIONS

In this article, we proposed several neighborhood-based
algorithms for large-scale recommender systems. An impor-
tant property of these algorithms is that their memory usage
scales linearly with the number of users or items as com-
pared to a quadratic scaling of most other neighborhood-

based approaches. This makes the algorithms scalable to
large-scale problems. To date it seems that powerful solu-
tions for collaborative filtering problems need to combine
the predictions of a diverse set of single algorithms. This
procedure is able to combine the specific advantages of sin-
gle algorithms. The standard approach is linear blending,
where the predictions are simply combined in a linear way
after training. The neighborhood-aware matrix factoriza-
tion algorithm tries to combine the advantages of two pow-
erful methods — a RMF approach and neighborhood-based
approach — in a more direct way: The predictions of one al-
gorithm are used to estimate unknown variables in the other
ones. One can therefore hope that the combination of them
is more than the (weighted) sum of its parts. Such hybrid
models are promising candidates for future research.
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